References
Billingsley, P. (1995). Probability and measure (3. ed., authorized reprint). New Delhi: Wiley India.
Caimo, A., & Friel, N. (2011). Bayesian inference for exponential random graph models. Social Networks, 33(1), 41–55. http://doi.org/10.1016/j.socnet.2010.09.004
Caimo, A., & Friel, N. (2014). Bergm: Bayesian exponential random graphs in R. Journal of Statistical Software, 61(2). Retrieved from http://www.jstatsoft.org/v61/i02/
Eddelbuettel, D. (2013). Seamless R and C++ integration with rcpp. New York: Springer.
Eddelbuettel, D., & Francois, R. (2011). Rcpp: Seamless R and C++ integration. Journal of Statistical Software, (40, 8).
Fellows, I., & Handcock, M. S. (2012). Exponential-family random network models. ArXiv Preprint ArXiv:1208.0121.
Geyer, Charles J., & Thompson, E. A. (1992). Constrained monte carlo maximum likelihood for dependent data. Journal of the Royal Statistical Society. Series B (Methodological), 54(3), 657–699. Retrieved from http://www.jstor.org/stable/2345852
Groendyke, C., Welch, D., & Hunter, D. R. (2012). A network-based analysis of the 1861 Hagelloch measles data. Biometrics, 68(3), 755–765. http://doi.org/10.1111/j.1541-0420.2012.01748.x
Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., Krivitsky, P. N., & Morris, M. (2016). ergm: Fit, simulate and diagnose exponential-family models for networks. The Statnet Project (http://www.statnet.org). Retrieved from http://CRAN.R-project.org/package=ergm
Hunter, D. R., Handcock, M. S., Butts, C. T., Goodreau, S. M., & Morris, M. (2008). ergm: A package to fit, simulate and diagnose exponential-family models for networks. Journal of Statistical Software, 24(3).
Ismay, C. (2017). thesisdown: An updated R Markdown thesis template using the bookdown package.
Morris, M., Handcock, M. S., & Hunter, D. R. (2008). Specification of exponential-family random graph models: Terms and computational aspects. Journal of Statistical Software, 24(4).
Murray, I., Ghahramani, Z., & MacKay, D. (2012). MCMC for doubly-intractable distributions. ArXiv Preprint ArXiv:1206.6848.
Robinson, D. (2016). Broom: Convert statistical analysis objects into tidy data frames. Retrieved from https://CRAN.R-project.org/package=broom
Schweinberger, M., & Handcock, M. S. (2015). Local dependence in random graph models: Characterization, properties and statistical inference. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 77(3), 647–676.
Shalizi, C. R., & Rinaldo, A. (2013). Consistency under sampling of exponential random graph models. The Annals of Statistics, 41(2), 508–535. http://doi.org/10.1214/12-AOS1044
Snijders, T. A. B., & Borgatti, S. P. (1999). Non-parametric standard errors and tests for network statistics. Connections, 22(2), 61–70.
Strauss, D., & Ikeda, M. (1990). Pseudolikelihood estimation for social networks. Journal of the American Statistical Association, 85(409), 204–212. Retrieved from http://www.jstor.org/stable/2289546
Wasserman, L. (2004). All of statistics. New York: Springer-Verlag.
Wasserman, S., & Pattison, P. (1996). Logit models and logistic regressions for social networks: I. an introduction to markov graphs and p*. Psychometrika, 61(3), 401–425.
Wickham, H. (2016a). Purrr: Functional programming tools. Retrieved from https://CRAN.R-project.org/package=purrr
Wickham, H. (2016b). Tidyverse: Easily install and load ’tidyverse’ packages. Retrieved from https://CRAN.R-project.org/package=tidyverse
Xie, Y. (2016). knitr: A general-purpose package for dynamic report generation in R (Version R package version 1.15.19).